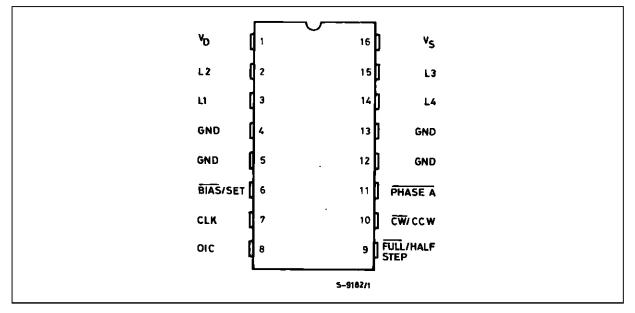


STEPPER MOTOR DRIVER

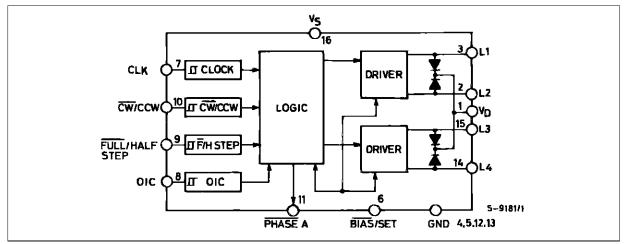
- SINGLE SUPPLY OPERATION + 7.2 V TO + 16 V
- 350 mA/ COIL DRIVE CAPABILITY
- BUILT IN FAST PROTECTION DIODES
- SELECTABLE CW/CCW AND FULL/HALF STEP OPERATION
- SELECTABLE HIGH/LOW OUTPUT IMPED-ANCE (HALF STEP MODE)
- TTL/CNOS COMPATIBLE INPUTS
- INPUT HYSTERESIS : 250 mV TYP.
- PHASE LOGIC CAN BE INITIALIZED TO PHASEA
- PHASEA OUTPUT DRIVE STATE INDICATION


DESCRIPTION

The MC3479C is designed to drive a two-phase stepper motor in the bipolar mode. The circuit consists of four input selections a logic decoding/sequencing section two driver stages for the motor coils and an output to indicate the Phase A drive state.

INPUT TRUTH TABLE

	INPUT LOW	INPUT HIGH			
CW/CCW	CW	CCW			
F/HS	Full Step	Half Step			
OIC	High Z	Low Z			
CLK	Positive Edge Triggered				


PIN CONNECTION

PIN DESCRIPTION

Symbol	Name	Pins	Description
Vs	Power Supply	16	Power Supply pin for both the logic circuit and the motor coil current. Voltage range is 7.2V to 16V.
GND	Ground	4-5-12-13	Ground pins for the logic circuit and the motor coil current. The physical configuration of the pins dissipating heat from within the package.
VD	Clamp Diode	1	This pin is used to protect the outputs where large voltage spikes may occur as the motor coils are switched. Typically a diode is connected between this pin and Pin 16 (see Figure 5).
L1, L2 L3,L4	Driver Outputs	2-3 14-15	High current outputs FOR the motor coils. L1 and L2 are connected to one coil and L3, L4 to the other coil.
B/S	Bias/Set	6	This pins is typicaly 0.7V below VS. The current out of this pin (through a resistor to ground) determines the maximum output sink current. If the pin is opened (IBB < 5.0mA) the outputs assume a high impedance condition while the internal logic presets to a Phase A condition.
СК	Clock	7	The positive edge of the clock input swiches the outputs to the next position. This input has no effect if Pin 6 is open.
F/HS	Full/Half Step	9	When low (logic 0) each clock pulse will cause the motor to rotate one full step. When high, each clock pulse will cause the motor to rotate one-half step (see Figure 4 for sequence).
CW/CCW	Clockwise Counter Clockwise	10	This input allows reversing the rotation of the rotation of the motor (see Figure 4 for sequence).
OIC	Out Impedance Control	8	This input is relevant only in the half step mode (Pin $9 > 2V$). When low (logic 0) the two driver out of the non-energized coil will be in a high impedance condition. When high the same driver outputs will be at a low impedance reference to V _S (see Figure 4).
Ph A	Phase A	11	This outputs indicate (when low) that the driver outputs are in the phase A condition (L1 = L3 = V_{OHD} ; L2 = L4 = V_{OLD}).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	V _{DC}
VD	Clamp Diode Cathode Voltage (pin 1)	Vs	VDC
Vod	Driver Output Voltage (pins 2, 3, 14, 15)	Vs	V _{DC}
I _{OD-}	Driver Output Current/Coil	± 500	mA
VIN	Input Voltage (pins 7, 8, 9, 10)	– 0.5 to 7	VDC
IBS	Bias/Set Current (pin 6)	10	mA
V _{OA}	Phase A Output Voltage (pin 11)	16	V _{DC}
IOA	Phase A Sink Current (pin 11)	20	mA
Tj	Junction Temperature	150	°C
T _{stg}	Storage Temperature range	– 55 to 150	°C

RECOMMENDED OPERATION CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vs	Supply Voltage (DC)	7.2	16	V
VD	Clamp Diode Cathode Voltage (DC)	-	Vs	V
I _{OD}	Driver Output Current (per coil)	-	350	mA
VI	DC Input Voltage (pin 7, 8, 9, 10)	0	5.5	V
I _{BS}	Bias/Set Current (outputs active)	- 300	75	μA
I _{OA}	Phase A Sink Current	0	8	mA
T _{amb}	Operating Ambient Temperature	0	70	°C

THERMAL DATA

Symbol	Parameter		Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	70	°C/W

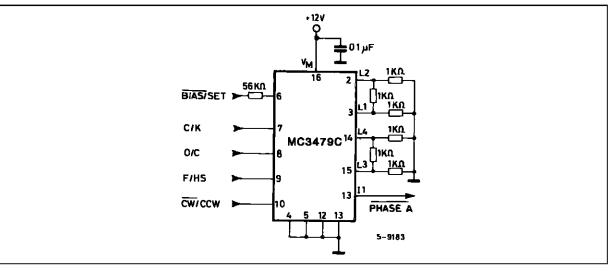
DC ELECTRICAL CHARACTERISTICS (Specifications apply over the recommended supply voltage and temperature range, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
INPUT LOO	INPUT LOGIC LEVEL					
Vtlh	Threshold Voltage (low to high)				2	V
VTHL	Threshold Voltage (high to low)		0.8			V
V _{HYS}	Hysteresis		0.4			V
I _{IL} I _{IH1} I _{IH2}	Current		- 100		100 20	μΑ μa μΑ

DRIVER OUTPUT LEVELS

V _{OHD}	Output High Voltage	$ I_{BS} = -300 \ \mu A \\ I_{OD} = -350 \ m A \\ I_{OD} = -0.1 \ m A $	V _S - 2.0 V _S - 1.2		V
Vold	Output Low Voltage	$I_{BS} = -300 \mu A$, $I_{OD} = -350 m A$		0.8	V
D _{VOD}	Difference Mode Out Voltage Difference	$I_{BS} = -300 \mu A$, $I_{OD} = -350 m A$		0.15	V
CVOD	Common Mode Out Voltage Difference	$I_{BS} = -300 \ \mu A, I_{OD} = -0.1 \ m A$		0.15	V
I _{OZ1}	Out Leakage-HiZ State	$0 < V_D < V_M$, $I_{BS} = 5\mu A$	- 100	+ 100	μΑ
I _{OZ2}	Out Leakage-HiZ State	$0 < V_{OD} < V_M$, $I_{BS} = -300 \mu A$ Pin 9 = 2V, Pin 8 = 0.8V	- 100	+ 100	μA

DC ELECTRICAL CHARACTERISTICS (Specifications apply over the recommended supply voltage and temperature range, unless otherwise noted) (continued)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
CLAMP DI	ODES			•	•	
V _{DF}	Forward Voltage	I _D = 350 mA		2.5	3	V
I _{DR}	Leakage Current	V _R = 21 V			100	μA
PHASE A	OUTPUT					
V _{OLA}	Out Low Voltage	I _{OA} = 8 mA			0.4	V
	Off State Leakage Current	V _{OA} = 16.5 V			100	μΑ
POWER S	UPPLY				•	
I _{SSB}	Power Supply Current in Stand by State	$V_{BS} = V_{S}$			12	mA
Is	Power Supply Current ($I_{OD} = 0$, $I_{BS} = -300\mu A$)	$ L1 = V_{OHD}, L2 = V_{OLD} \\ L3 = V_{OHD}, L4 = V_{OHD} $			75	mA
BIAS SET	CURRENT					
I _{BS}	Bias Set Current	to set PHASEA	- 5			μA
Notes: 3	DVOD = VOD1.2 - VOD3.4 VOD1 2 - (VOHD1 - VOHD2) or (VOHD2 - VOLD1) AND				2)	

VOD1.2 = (VOHD1 - VOHD2) or (VOHD2 - VOLD1) AND 4. CVOD = | VOHD1 - VOHD2 or VOHD3 - VOHD4 |

AC SWITCHING CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_M = 12 V$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CK}	Clock Frequency		0		30	kHz
PWCKH	Clock Pulse Width	HIGH	10			μs
PWCKL	Clock Pulse Width	LOW	20			μs
t _{SU}	Set-up Time CW/CCW and F/HS		5			μs
t _{HO}	Hold Time CW/CCW and F/HS		10			μs
t _{PCD}	Propagation Delay CLK-to Driver Out			8		μs
t _{PBSD}	Propagation Delay Bias/Set to Driver Output			1		μs
t PHLA	Propagation Delay CLK-to Phase A LOW			12		μs
t PLHA	Propagation Delay CLK-to Phase A HIGH			5		μs

Figure 1 : AC Test Circuit

SGS-THOMSON

R(C) IE L E

NMF()

Figure 2 : Typical Application Circuit.

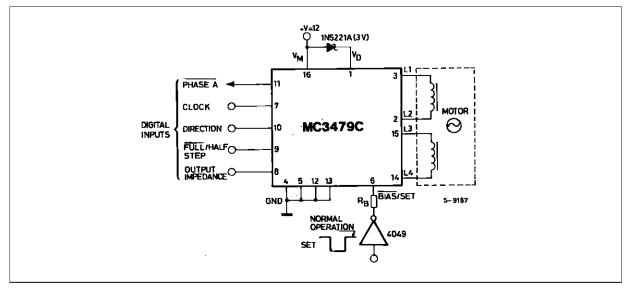


Figure 3 : Bias/Set Timing (refer to fig.1).

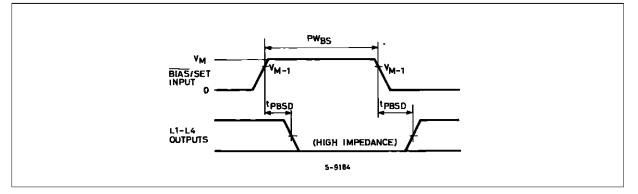
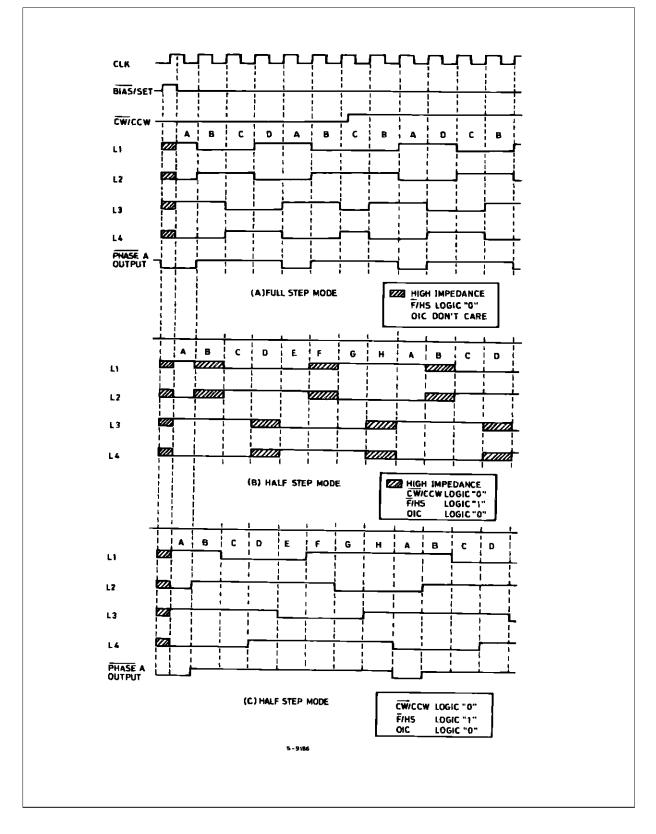
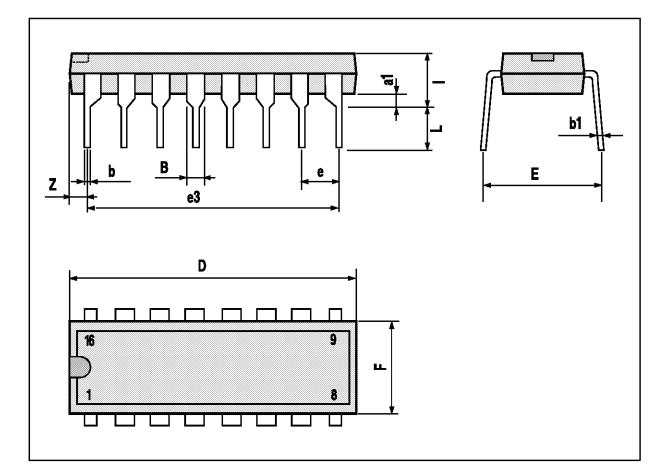



Figure 4 : Clock Timing (refer to fig.1).


Figure 5 : Output Sequence.

DIM.		mm			inch	
Dim	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
Е		8.80			0.346	
е		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

POWERDIP16 PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

